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Background

§ Reliable metadata: not available for large crawled web corpora
§ Topic domain (and genre/register) meta data:
essential to many corpus linguists

§ Also important for corpus evaluation and corpus comparison

§ Automatic classification by genre/register: in unrestricted
domains, disappointing results, even in recent experiments

§ Biber and Egbert (2016): acc.=0.42, prec.=0.27, rec.=0.3
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Automatic classification by content

§ Promising results years ago already (Sebastiani, 2002)
§ Data-driven induction of topics: a very objective way
of organizing a collection of documents by content

§ Topic classification through internal criteria:
also advocated in the EAGLES (1996) guidelines

But:
§ Topic modeling: no category labels
§ From a linguist’s viewpoint: categories should be
‘intuitively’ interpretable
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Experiment

Idea
1. Infer a topic distribution over a corpus using

topic modeling algorithms (unsupervised)
2. Do not interpret the inferred topical structure directly
3. Instead, learn a small set of topic domains from

the documents’ assignment to the topics (supervised)

Goals
§ Development of a suitable annotation scheme
for topic domain, grounded in lexical distributions

§ Corpus comparison: web corpus vs. newspaper corpus
(very little is known about the composition
of crawled web corpora)
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CoReCo

Custom classification schema for topic domains
http://corporafromtheweb.org/cowcat/

§ Design goal: moderate number (about 10–20) of topic domains
(broad subject areas)

§ Basis for our classifcation experiment reported here: 13 categories
§ Developed in a cyclic fashion

(repeated annotation processes, annotator feedback)

http://corporafromtheweb.org/cowcat/


Step 1: Creating a gold standard data set

§ 870 documents from DECOW14, crawled web corpus
(Schäfer and Bildhauer, 2012; Schäfer, 2015)

§ 886 documents from DeReKo, mostly newspaper texts
(Kupietz et al., 2010)

§ Manually annotated with CoReCo categories

Annotators: Sarah Dietzfelbinger, Lea Helmers, Theresia Lehner,
Kim Maser, Samuel Reichert, Luise Rißmann (FU Berlin);
Monica Fürbacher (IDS Mannheim)



Distribution of topic domains

Comparison of DeReKo and DECOW14
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Step 2: Topic modeling

§ Starting point: term-document matrix
§ Topics: defined by a set of weighted terms
§ Documents: weighted assignment to topics

Our experiment:
§ LSI (Landauer and Dumais, 1994)
LDA (Blei et al., 2003)
as implemented in Gensim (Řehůřek and Sojka, 2010)

§ LDA topic distributions unstable (small gold standard corpora)
§ Results reported here are from LSI topic modelling
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Corpus comparison: distribution of (selected) LSI-topics
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Step 3: Learning CoReCo topic domains from LSI-topics

§ Permutation of virtually all supervised classifiers in Weka
(Hall and Witten, 2011)

§ Highest accuracy: SVMs with a Pearson VII universal kernel
(Üstün et al., 2006)

Set of experiments with:
§ varying number of LSI-topics
§ topics induced from

§ gold standard data plus varying amounts
of additional documents

§ several pre-processing variants

§ evaluation on the full data set and on a reduced data set
(with rare categories removed)
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Results: Web (accuracy)
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Results: News (accuracy)
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Results: Web + News (accuracy)
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Results: all

Corpus Mixed-in Attribute Topics Accuracy Precision Recall F-Measure
Web 3,200 token 20 68.765% 0.688 0.688 0.674
News 3,600 lemma + POS 40 72.999% 0.725 0.730 0.696
Web + News 0 lemma + POS 30 51.872% 0.431 0.519 0.417

§ Web + News: larger training set does not increase accuracy
§ Web + News: mixing in more documents for topic modeling
does not increase accuracy

§ News data are even more skewed than web data
(two modal categories: Politics-and-Society, Life-and-Leisure)

§ higher accuracy (4.23%) with News data probably a side effect
of the more skewed distribution

§ Web + News: classifier assigns most texts to Life and Leisure,
and the remaining texts mostly to Politics and Society



Conclusions

§ Connection between induced topic distributions
and more general topic domains

§ Decreased performance on joint Web and News corpora:
§ use larger gold standard training set
§ train separate models for Web and News data

§ Adapt annotation scheme
§ split up some topic domains (based on annotator feedback)
§ current experiments: multiple weighted assignments
of documents to topic domains

§ Ultimate goal: automatically annotate existing web corpora
with meta data release the data freely
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Appendix: confusion matrices
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